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Abstract

This paper investigates moments of hypergeometric Hurwitz zeta functions.

1. Introduction
In this paper, we investigate moments of hypergeometric Hurwitz
zeta functions defined by

( ) 1 0 xs+N—2e(1—a)x
Cnls, a) = I dx,
N I(s+N-1)Jo o* _ T4 (x)

N>1, O<ac<l. (1.1)

Throughout this paper, we assume that NV is a positive integer and a

is a real number with 0 < a < 1. Observe that {;(s, a) = {(s, a), where

(s, a) is the classical Hurwitz zeta function. Following Riemann, we
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develop their analytic continuation to the entire complex plane, except for

N simple poles at s =1, 0, -1, ---, 2 - N, and establish many properties

analogous to those satisfied by Riemann’s zeta function.

In Section 2, we define hypergeometric zeta functions, establish
convergence on a right half-plane, and develop their series
representations. In Section 3, we reveal their analytic continuation to the
entire complex plane, except at a finite number of poles, and calculate
their residues in terms of generalized Bernoulli numbers. In Section 4, we
establish a series formula valid on a left half-plane and use it to establish

formulas involving moments of hypergeometric Hurwitz zeta functions.
2. Preliminaries

In this section, we formally define hypergeometric zeta functions,
establish a domain of convergence, and demonstrate their series

representations.

Definition 2.1. Denote the Maclaurin (Taylor) polynomial of the

exponential function e* by

N xk
k=0

We define the N -order hypergeometric Hurwitz zeta function (or just

hypergeometric Hurwitz zeta function for short) to be

( ) 1 ooxs+N—2e(1—a)x
C S, a)= J‘ dx,
N Ts+N-1Jo o Z 7y (x)

N>1, 0O<ac<l. 2.1)

Lemma 2.1. { (s, a) converges absolutely for o = R(s) > 1.
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Proof. Choose 0 < a <1 such that ¢ + a >1. Let K > 0 be such

that e* > e +Ty_1(x) for all x> K. This is equivalent to
e¥ —Txh_1(x) > e**. For ¢ > 1, we have

1 K|e(1—a)xxs+N—2| o
En(s, a)| < j dx+J. dx
e DN [l

K (1-a)x,.c+N-2 ©
< |r(s . llv l)l {j e NX/ ‘ dx + J. xc+N—2e(1—a—a)xdx:|‘
- 0 X N! K

e(l—a)xxs+N—2

e’ —Tn_1(x)

The first integral is finite and since 1 — a — a < 0, the second integral is

convergent. This proves our lemma. O

We establish a “Dirichlet type” series representation for hypergeo-

metric Hurwitz zeta in the next few lemmas.

Lemma 2.2. For ¢ > 1, we have

Gn(s @)= D fu(N, s, a), 2.2)
n=0
where
_ ; ® s+N-2mmn —(n+a)x
(N, s, a) = T+ N -1 -[0 x TN _1(x)e dx. (2.3)

Proof. Since |Ty_j(x)e™™| <1 for all x >0, we can rewrite the

integrand in (2.1) as a geometric series

xs+N—26(1—a)x e—axxs+N—2

¥ —Tyq(x) 1-Ty_q(x)e™

_ efaxxs+N—2 Z [TN—l (x)e—x ]n
n=0

— xStN-2 Z T]r\}—l (x)e—(nJra)x.
n=0
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The lemma now follows by reversing the order of integration and

summation because of dominated convergence theorem

_ 1 N-2%C ~(n+a)
R e e IR 2 Tha(e)e 0N

_ N ; ® stN-2mn —(n+a)x
= Z{F(s+ N 1) Io x TN _1(x)e dx}.

n=0
O
Lemma 2.3. For f,,(N, s, a) given by (2.3), we have
(N1, @) = — 2.4)
n+a

Proof. Since xV 7! = (N = 1)1 [Ty_1(x) - T _5(x)], it follows that

1 * —1mpn —(n+a)x
fn(N, 1, a) = (ZV——]-)'.[O .’)CN lTN_l(x)e (n+a) dx

= 'l.ooT]r\?tll(x)e_(“a)xdx - _[wTN—Z(x)Tﬁ_1(x)e_(n+a)xdx,
0 0

But the two integrals above merely differ by 1/(n + a), which results

from integrating by parts

1
n+a

J‘ wT]’\}tll (x)e M+ gy = + J. OoTN_2 (TR (x)e @ gy
0 0

This establishes the lemma. O
Lemma 2.4. For R(s) = ¢ > 1, we have

QN(S’ G)Z Z(
~n+a

AN 5 D (n;i’Na)l : (2.5)

where
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n(N-1

)
uN(n’ S, a) = M(s +N - 1)k (2.6)
k=0 (n+a)
Here aj,(N, n) is generated by
N-1 xk n n(N-1)
(Tn-1(x)" = [27] = Z ap(N, n)xk.
k=0 k=0

Proof. With aj(N, n) as given above, we have

_ . ; ® s+tN-2mmn —(n+a)x
Cn(s, a) = Zr(s TNCD) Jo x TN 1(x)e dx

n=0
0 1 o n(N-1) . ( )
_ L xs+N—2 ak(N, n)x ]e— n+a xdx]
n:O[F(S-i-N—l) .[0 k;)
© n(N-1) s+k+N-2
1 1 ® x _
= ap(IN, n)=—— |e *dx
;{F(S+N—1) nS+N—1 -[0 kZ:(:) k( ) (n+a)k ] ]
o) n(N-
_ Z 1 1 (Zl) ai(N, n) Ooxs+k+N—Ze—xdx
S TG+ N-1)p N = (nra)t Jo
:i_ 1 n(il)ak(N, n)T(s+N+k-1) |
nzo_ns+N_1 = (n+ a)k I(s+N-1) |

o [ n(N-1)
5 ;[ aln)

T+ (n+a)

| I

l"’N(n7 S, a)
—~ (n+a)s+N—1
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Lemma 2.5.

n(N-1)
_ ar(N, n) B N-1
uny(n 1, a) = };:0 W(N)k =(n+a)” . 2.7)

Proof. Since uy(n, s, a)/(n+a)™ 71 = £,(N, s, a), we have from

(2.4) that py(n, 1, a)/(n+a) = £,(N,1,a)=1/(n + a). The result of

the lemma now becomes clear. O
3. Analytic Continuation

In this section, we follow Riemann by using contour integration to
develop the analytic continuation. To this end, consider the contour

integral

1 (_ w)s+N—1e(1—a)w dw
2mi )y Iy ) @

In(s, a) = , (3.1)

where the contour y is taken to be along the real axis from «© to & > 0,
then counterclockwise around the circle of radius 8, and lastly along the
real axis from & to o (cf. Figure 1). Moreover, we let —w have argument
— 7 backwards along « to 8 and argument n when going to «. Also, we
choose the radius 8 to be sufficiently small (depending on N) so that,
there are no roots of e —Txn_i(w) = 0 inside the circle of radius §
besides the trivial root zy = 0. This follows from the fact that zy = 0 is
an isolated zero. It is then clear from this assumption that Iy (s, @) must

converge for all complex s and therefore defines an entire function.
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Figure 1. Contour y.

Remark 3.1. (a) To be precise the contour y should be taken as a
limit of contours y. as ¢ — 0, where the portions running along the

x-axis are positioned at heights +e. Moreover, the poles of the integrand

in (3.1) cannot accumulate inside this strip due to the asymptotic

exponential growth of the zeros of e* — T_;(w) = 0 (see [4]).

(b) Since we are most interested in the properties of Ix(s, a) in the

limiting case when & — 0, we will also write Ip(s, a) to denote
limgs_,q In(s, @).

We begin by evaluating Ix(s, @) at integer values of s. To this end,
we decompose it as follows:

I, @) = 1 5e(l—a)xe(s+N—1)(logx—7'ci) d_x
A 27 Jo e* —Ty_1(x) x
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1 (- w)s+N—le(1—a)w dw
S T T

L ooe(l—a)xe(s+N—1)(logx+irr) %

+ :
2mt Js e’ =Ty 1 (x) *

(3.2)

Now, for integer s = n, the two integrations along the real axis in (3.2)
cancel and we are left with just the middle integral around the circle of
radius &

1 (- w)n+N—1e(1—a)w dw

I n,a)=—— .
VO g s e Ty )

Since the expression e{l~®¥yN (e¥ - Ty_1(w))™ inside the integrand
has a removable singularity at the origin, it follows by Cauchy’s theorem

that for integers n > 1,
In(n, a) = 0.

For integers n < 1, we consider the power series expansion

wNed=akw / A R BN’m(l—a)wm

= (3.3)
e’ =Ty (w) =5 m!
It now follows from the residue theorem that
In(n, a) = 1 (cw) el aw
2 s o Ty ) W
_ (L pyN ﬂj i Byml-a) .| dw
2ni J fw|=5 — m! w2
-1 NINIBy . (1-a
= waal-a o

1-n)
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We now express { (s, @) in terms of Ip(s, a). For R(s) = o > 1, the

middle integral in (3.2) goes to zero as 6 — 0. It follows that

em(erN—l) _ e—m(s+N—1)

It )= ( 2mi jJ.O (€% — Ty 1 (x)) tel-dgs N -2gy

_ sin[n(s + N ~1)]

- [(s+ N -1)¢x(s, a).

Now, by using the functional equation for the gamma function

T

FL-(s+N-1)I(s+N-1)= sinfn(s + N —1)]’

we obtain
Cn(s,a)=TA - (s+ N -1)Iy(s, a). (3.5)

Remark 3.2. Equation (3.5) and the fact that 0 < a <1 imply that

the zeros of I (s, a) at positive integers n > 1 are simple, since we know
by Equation (1.1) that {n(n, @) > 1 for n > 1.
We close this section by proving the following theorem:

Theorem 3.1. (s, a) is analytic on the entire complex plane except

for simple poles at {2 - N, 3 - N, ---, 1}, whose residues are

N
Res(Cn(s, a), s =n)=(2-n) Byin(l-a), 2-N<n<Ll.

2-n

(3.6)

Furthermore, for negative integers n less than 2 — N, we have
N1 1-n\t

(n(n)= (1) By n,1-a). (3.7)

N
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Proof. Since 'l — (s + N —1)) has only simple poles at s = 2 - N,
3-N, -+, and Ip(s, a) has simple zeros at s = 2, 3, ---, it follows from
(3.5) that (s, @) is analytic on the whole plane except for simple poles

at s =n,2- N <n <1. Recalling the fact that the residue of I'(s) at

negative integer n is (- 1)" /|n|!, it follows from (3.4) that
Res({n (s, @), s = n) = lim(s - n)Cn (s, a)
S—n

= lim[(s ~ n)l(1 = (s + N -~ 1)In (s, a)]

2-N-n
((2 1)N )' IN(I’L, a)

(12N )TN By (- a)
(2-N-n) T-n)

N
=(2- n){ JBN,I—n(l - a),

2-n

which proves (3.6). For n<2- N, (3.4), (3.5), and the fact that
Nl-(n+N-1))=(1- N -n) imply

En(n,a)=T(1-(n+ N -1)Ix(n, a)

(-1)"NINIQ - N -n) By 1_,(1-a)
- 1-n)

1-n

-1
= (- 1)_”‘N+{ J By,1-n(l-a),

N

which is (3.7) . This completes the proof of the theorem. O
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4. Moments of Hypergeometric

Hurwitz Zeta Functions

In the present section, we discuss a ‘pre-functional equation’ satisfied

by Cn(s, @). Let yg be the contour shown in Figure 2, where the outer
circular region is part of a circle of radius R = (2M + 1)n (M is a positive

integer so that the poles of the integrand are not on the contour), the

inner circle has radius & < 1, the vertical line is R(z) = —1. The outer

semi-circle is traversed clockwise, the imaginary axis is traversed from
bottom to top, the inner circle counterclockwise, and the radial segment
along the positive real axis is traversed in both directions. Then define

1 (- Z)s+N—le(1—a)z dz

I,.(s,0)= 5=

- (4.1)
2nt Jyp e —Tn_1(z) #

We claim that I,,(s, ) converges to Iy(s,a) as R — o for
R(s) < 0. To prove this, observe that the portion of I, (s, a) around the

outer circle and the imaginary axis tends to zero as R — o« on the same

domain. To prove this, we first choose a constant P > 0, such that
A|Z|N_1 <|Ty_1(z) < B|2|N_1, for all || > P.

But then on the outer circle defined by |z| = |R(cos 8 + isin 0) = (2M + 1),

if we choose R > P, then

e* = Ty_y| 2 n(e® - ClgV 1),

where n = 1 and C = A or B. Thus,

|ZN—1e(1—a)z | 3 e(l—a)xlle—l i RN-1,-aR cos 0
e — Ty _1(2)|  n(e® - CleN 1) n(1- CRN 1 Beost)’

converges to zero as R — o, since —n/2 < 0 < n/2. On the imaginary

axis z = 1y, we have
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|2N—le(1—a)z | L |y|N—1

|ez - TN—1(Z)| A|)’|N_1 -1

which converges to 1/ A as |y| » «. Since |(-2)°/z| < |z|§ﬁ‘f(s)*1 and
R(s) < 0, we conclude that the integrals on the outer circle and the

vertical lines both converge to zero as R — o. On the circle of radius 25,

the integrand is bounded and hence the integral vanishes as § — 0.

In(s, a) = l%l_r)nw I, (s, a) (4.2)

Figure 2. Contour yy;.
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On the other hand, we have by residue theory

K _ _\StN-2 _(1-a)
I,.(s,a)= —Z[Res(( 2) e " , 2 = zkj

s} e —Tn_1(2)
_ _\StN-2 (1-a)z
+ Res(( 2) ¢ , 2= Ekﬂ (4.3)
e = Tn_1(z)

Here, z;, = rkeiek and zj;, = rke_iek are the complex conjugate roots of
e ~Tyn_1(z) =0 and K = Kj; is the number of roots inside yp in the
upper-half plane. Clearly, z;, depends on N. We will make this
assumption throughout and use the same notation z; instead of the more
cumbersome notation z,(N). Moreover, we arrange the roots in
ascending order so that |z;| < |z9| < |23| < :--, since none of the roots can

have the same length (see [4]). Now, to evaluate the residues, we call

upon Cauchy’s integral formula

~ _\$+N-2 (1-a)z _
Res ( Z) e z=z, | = (_ . )s+N—2e(l—a)2k lim 22 .
z k k z
e* —Ty_1(2) 2%k e — Ty 1(2)

Here, C}, is any sufficiently small contour enclosing only one root z; of
e® —Ty_1(z) = 0. But then

lim —= %k : -
o2 e? — Ty 4(2) e —Ty o(z,) 2k

It follows that

_ _\$tN-2 (1-a)z
Res [( Z) e Lz = ZkJ _ (_ 1)N—1 (N _ 1), (_ 2 )s—le(l—a)zk )

e® —~Tn_1(2)
Therefore,
K —
Lo a) = (DN -0 Y |- 2 )o@ 4 (-7, el |
k=1

(4.4)
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Since K —» © as R — «, we have by (4.2) and (4.4),
In(s, a) = I%i_r)nw I,.(s, a)

= 2(- )N IV — 1) Z[(- 2 Lol 4 (— 5, 1el-0P] (4.5)
k=1

Combining (3.5) and (4.5), we have proved

Theorem 4.1. For R(s) < 0,
tns a)=2- DN YN 1) T - (s + N - 1))
DY CE e NN ) (4.6)
k=1
Theorem 4.2. For R(s) < - N

j:aMCN(S, a)da

0, if M=N-1,

i DM Ipnra-(s+ N - 1))
i ATl -(s+N+n-M - 2))

N(s+n-M-1), if M <N -1,

n=M+1

Cn(s+n—-M-1), if M >N.

i( DM AT - (s + N - 1))
= nTl-(s+ N+n-M-2))

4.7

Proof. Denote by A = 2(-1)Y (N -1)IT(1 - (s + N —1)). Then for
M > N,

I:aMCN(s, a)da

= AJ'OIGMZ[(— 2 ) ellmaRk o (= 7y )t ]da (4.8)
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= 1 1 _
= AZ {(— 2, )P -[0 aM =02k gy 4 (-z,)°! jo aM (1-a)z da}. (4.9)
k=1

To justify the interchange of the sum and the integral, we note that

zp = xp +1yp with x, >0 and y, = 0. We recall from the work in [4]

that |z;| > ak for some positive constant a. Thus,

‘(_ 2 )s—le(l—a)zk _ |Zk |G—1|eZk |e—axk

< 2" Tn 1 (z1)

N-1

’

< Bz

&2

where B is some positive number and |zj| > M for some positive number

M. Consequently,

‘(_ Zk)s—le(lfa)zk N aBkcHN—Z = M,

for all |z;| > M and o+ N — 2 < 0. Since

D My = opt2- N - o) < o,
k=1

we see that the infinite series is uniformly convergent and hence the

interchange is admissible.

But
M
ek —Th_1(zp) — E Zk
J.laMe(lfa)dea = M! N-1() n=N 1! (4.10)
0 M+1
2k
M Zn—M—l
—_ Zk
=-M § pra (4.11)

n=N

since zj, are roots of e — Ty _;(z) = 0. A similar integral formula holds

for the roots zj. It follows that
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j:aMCN(S, a)da

0 M u
= AZ {Z (— 1)M—n 7 [(_ 2 )s+n—M—2 4 (_ Ek )s+n—M—2 ]}
k=1 (n=N :

M=n - 3 s+n— - = \s+n-M-
S S )

M M-n
- EDTIMIO e N ) w12
=N

The argument for the cases M = N -1 and M < N —1 are completely

analogous. O
5. A Zero Free Region on the Left Half-Plane

In this section, we will prove that {y(s, @) has no zeros in the left
half-plane o < —3, except for one zero in the interval S,, for each

integer m > 3, where S,, is given by

I _ 0 -(-a)y —mn

Om o, m=12,3, ...

Sm = [Gm—l’ Sm

Here 6; =1.2978341024 and y; = 7.461489286.

In [4], we had established the following facts about the zeros
2y =Xp +iyp = rkeiek of e —1 -2z = 0. These zeros can be arranged in

an increasing order of magnitude and in doing so we will have the

argument also in an increasing order. In fact, both sequences {0, } and

{r,} are increasing with

0<0,<n/2 and 1, > 2nk. (5.1)
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Furthermore, for R > 1, if r, =
/ R? 1 [ R
= -5 B=45— (5.2)
1+R? R R-1

Ae*t <y, < Be"k

then

In the same paper (see Lemma 5.2), we also have

1 1
Zn(k +§) < yp < Zn(k +Zj.

Combining these last two inequalities, we see that

(1-a) (1-a) (1-a) (1-a)
(%j a (k . %) a < e(l—a)xk < (%) (k + %) . (53)

Theorem 5.1. Let s = o +it. If 6 < —3 and || > 1, then {y(s, a) # 0.
Proof. We use (4.6) (with N = 2) and rewrite {5(s, a) as
Ca(s, a) = f(s, a) (L + &(s, a)), (5.4)
where
fs, @) = — 2= s)[(— 2 Ll 4 (7 0B ] )
and

)S—le(l—a)zk 4 (_ Ek )S—le(l—a)gk

g(s, a) = Z{(_ “k (5.6)
k=2

(_ 2 )s—le(l—a)zl + (_ z )s—le(l—a)El

We now estimate |g(s, @)|. First note that by triangle inequality, we

have

|g(s a) %Z( j (1 a)(xp xl) (5.7)
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where

N (_ z )s—l e(l—a)El

a=1 (_ 2 )s—le(l—a)21 ’

(5.8)

For ¢t > 1, we have by the reverse triangle inequality

|(_ El )s—le(lfa)gl |

|(_ 2 )s—le(l—a)21 | -

lof > 1- 1-e 2% >1_ ¢ £ 0.925404,

while for ¢t < —1, we have

|(_ z )s—le(l—a)El |

—1 =20 _1 > 02 _1 ~12.045544.
|(_ 2 )s—le(l—a)zl |

|of >

Thus for [f| > 1, we see that 1/|a| <1.0806091. Using this bound for
1/o| and using (5.3) in (5.7), we get

N RPN PR
lg(s, a)|£2(1.0806091)(ﬁ) ;(’;—’;) (k+zj . (5.9)

We use r, > 2nk from (5.1), to estimate the above inequality as

8B (1—a) n (1*5) 0 1 1 (1—a)
l2(s, )| < 2.1612183(ﬁj (%] ;km (]“Zj . (5.10)

We now use the fact that r; ~ 7.48360311 and choose R =10 in (5.2),
to get A ~ 0.852318, B ~ 1.11111. With these values, the function

(1-0) &

_ 8B\ n 1 1))
o(o, a) = 2.1612183(9—A) (2_7:) };kl_c (k+z) , (5.11)

is an increasing function of ¢ on (-, — 3) and a decreasing function of a

on [0, 1]. Hence,

lg(s, a)| < ¢(c, @) < ¢(-3, 0) < 1,

for 6 < —3 and 0 < a < 1. By the reverse triangle inequality, it follows

that
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|Ca(s, @) = [f(s, a)|[L + &(s, a)| 2 [f(s, @)| (1 - [g(s, a)) > O,
since |f(s, @) > 0 in the region of the hypothesis. This proves the
theorem.
Theorem 5.2. If 6 < -3 and || <1, then (y(s, a) has exactly one
root in the interval [c,,, 6,,_1 |, where

_ 6 -(1-a)y -mn

, m=123, ... (5.12)
7'5—61

m

Here 6, =1.2978341024 and y; = 7.461489286.

Proof. Let y,, be the rectangle with vertices ¢,, +i and o,, 1 *1i.
Let f(s, a) and g(s, a) be as in (5.5) and (5.6), respectively. We shall
show that

lg(s, @)l <1 on yp,. (5.13)
Note then that, by the definition of f and g ((5.5) and (5.6)), we have
|§2(Sa a) - f(S, a)l = |f(8, a)g(s, a)l < |f(8’ a)l?

and by Rouche’s theorem f(s, a) and {9(s, @) have the number of roots

inside v,,. Clearly, the roots of
s @) = —2r )| 2 e 4 (- 7y el ]

are the roots of (—z)° e 1+ (=2 ) Te""2 and the later has
exactly one root in the interval [c,,, 6,,_1 ], where &, is given by (5.12).
On the other hand, from (4.6), we observe that {9(s, a) = {5(s, a). Thus,
if s =c+it with [t <1 and 5,, <o < 6,1 is aroot of {s(s, @), then §

1s also a root in the same region. Hence s = s and the theorem follows.

To prove (5.13), we first consider the vertical line ¢ = o, |f| <1,

where o, is given by (5.12). Using s = o, + it in (5.8), we have

|OL| _ ‘1 " e—Zzel(s—l)—szl(l—a)
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_ |1 " e—mee—Zeltl - 14 e—291t

> 1.074596014.

Hence 1 /o] < 0.9305823. But then (5.10) becomes

(1-a) 1l-0) & (1-a)
18(s, @)| < 1.8611647 (%) (%j kZlelg (k " %) . (5.14)

It then follows from the proof of Theorem 5.1, that |g(s, a)| < ¢(c, a) < 1,

where ¢(c, a) is given by (5.11), for ¢ = 6,, < 69 < —4.29524. Similar

argument can be used on the vertical line 6 =6,, 1 =1- ﬁ (m-1),
-9

| <1.

Next, we consider the top horizontal boundary ¢t =1, 6,, < 6 £ 6,,1
of v,,. On this line, we have, again from the proof of Theorem 5.1,
1/|of <1.0806091.0nce again, we have [g(s, a)| < ¢(c)<1 since
o, < 09 < —4.29524. The argument for the lower horizontal boundary

is exactly the same and we have proved our theorem.

Theorem 5.3. Let s = o +it. If c < —4 and |t| > 1, then (3(s, a) # 0.

Proof. As in Theorem 5.1, we also use (4.6) with N = 3. Let f(s, a)
and g(s, @) be as in (5.5) and (5.6), respectively, with rkeiek being roots
of ¥ —1-x—-x2/2=0. In [4], we have established that the roots of

e —1-x—x2 /2 = 0 can be rearranged to satisfying (5.1). Furthermore,
we have n =~ 9.2053499, 0; ~ 1.1406576364, and 09 =~ 1.2568294158.
Hence for [ff >1, we have 1/|a| < 0.927818.0n the other hand, for

o < —4, we have
¢(c, a) < 1.

As before, it follows that |g(s, @)| <1 for 6 < -4 and [t/ >1 and hence

C3(s, a) # 0. This completes the proof of the theorem.
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Combining the arguments of the proofs of Theorem 5.2 (with the

obvious modifications) and Theorem 5.3, we obtain the following theorem:

Theorem 5.4. If 6 < -3 and [t| <1, then for each m =3, 4,5, -,

C5(s, @) has exactly one root in the interval [c,,, G,,_1], where c,, is

given by (5.12). (Here 6; =~ 1.1406576364).
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