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Abstract 

This paper investigates moments of hypergeometric Hurwitz zeta functions. 

1. Introduction 

In this paper, we investigate moments of hypergeometric Hurwitz 
zeta functions defined by 

( ) ( )
( )

( )
,1

1,
1

12

0
dx

xTe
ex

Nsas
N

x

xaNs
N

−

−−+∞

−−+Γ
=ζ ∫  

.10,1 ≤<≥ aN  (1.1) 

Throughout this paper, we assume that N is a positive integer and a 
is a real number with .10 << a  Observe that ( ) ( ),,,1 asas ζ=ζ  where 

( )as,ζ  is the classical Hurwitz zeta function. Following Riemann, we 
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develop their analytic continuation to the entire complex plane, except for 
N simple poles at ,2,,1,0,1 Ns −−= "  and establish many properties 

analogous to those satisfied by Riemann’s zeta function. 

In Section 2, we define hypergeometric zeta functions, establish 
convergence on a right half-plane, and develop their series 
representations. In Section 3, we reveal their analytic continuation to the 
entire complex plane, except at a finite number of poles, and calculate 
their residues in terms of generalized Bernoulli numbers. In Section 4, we 
establish a series formula valid on a left half-plane and use it to establish 
formulas involving moments of hypergeometric Hurwitz zeta functions. 

2. Preliminaries 

In this section, we formally define hypergeometric zeta functions, 
establish a domain of convergence, and demonstrate their series 
representations. 

Definition 2.1. Denote the Maclaurin (Taylor) polynomial of the 

exponential function xe  by 
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We define the thN -order hypergeometric Hurwitz zeta function (or just 
hypergeometric Hurwitz zeta function for short) to be 
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Lemma 2.1. ( )asN ,ζ  converges absolutely for ( ) .1>=σ sℜ  
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Proof. Choose 10 <α<  such that .1>α+a  Let 0>K  be such 

that ( )xTee N
xx

1−
α +≥  for all .Kx ≥  This is equivalent to 

( ) ≥− − xTe N
x

1  .xeα  For ,1>σ  we have 
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The first integral is finite and since ,01 <α−− a  the second integral is 
convergent. This proves our lemma.   

We establish a “Dirichlet type” series representation for hypergeo-
metric Hurwitz zeta in the next few lemmas. 

Lemma 2.2. For ,1>σ  we have 
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Proof. Since ( ) 11 <−
−

x
N exT  for all ,0>x  we can rewrite the 

integrand in (2.1) as a geometric series 
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The lemma now follows by reversing the order of integration and 
summation because of dominated convergence theorem 
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 

Lemma 2.3. For ( )asNfn ,,  given by (2.3), we have 
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But the two integrals above merely differ by ( ),1 an +  which results 

from integrating by parts 
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This establishes the lemma.   

Lemma 2.4. For ( ) ,1>σ=sℜ  we have 
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Here ( )nNak ,  is generated by 
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Proof. With ( )nNak ,  as given above, we have 
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Lemma 2.5. 
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Proof. Since ( ) ( ) ( ),,,,, 1 asNfanasn n
Ns

N =+µ −+  we have from 

(2.4) that ( ) ( ) ( ) ( ).1,1,,1, anaNfanan n
N

N +==+µ  The result of 

the lemma now becomes clear.   

3. Analytic Continuation 

In this section, we follow Riemann by using contour integration to 
develop the analytic continuation. To this end, consider the contour 
integral 
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where the contour γ  is taken to be along the real axis from ∞  to ,0>δ  

then counterclockwise around the circle of radius ,δ  and lastly along the 

real axis from δ  to ∞  (cf. Figure 1). Moreover, we let w−  have argument 

π−  backwards along ∞  to δ  and argument π  when going to .∞  Also, we 

choose the radius δ  to be sufficiently small (depending on N) so that, 

there are no roots of ( ) 01 =− − wTe N
w  inside the circle of radius δ  

besides the trivial root .00 =z  This follows from the fact that 00 =z  is 

an isolated zero. It is then clear from this assumption that ( )asIN ,  must 

converge for all complex s and therefore defines an entire function. 
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Figure 1. Contour .γ  

Remark 3.1. (a) To be precise the contour γ  should be taken as a 

limit of contours γ  as ,0→  where the portions running along the       

x-axis are positioned at heights .±  Moreover, the poles of the integrand 
in (3.1) cannot accumulate inside this strip due to the asymptotic 

exponential growth of the zeros of ( ) 01 =− − wTe N
w  (see [4]). 

(b) Since we are most interested in the properties of ( )asIN ,  in the 

limiting case when ,0→δ  we will also write ( )asIN ,  to denote    

( ).,lim 0 asIN→δ  

We begin by evaluating ( )asIN ,  at integer values of s. To this end, 

we decompose it as follows: 
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Now, for integer ,ns =  the two integrations along the real axis in (3.2) 

cancel and we are left with just the middle integral around the circle of 
radius δ  
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Since the expression ( ) ( ( )) 1
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has a removable singularity at the origin, it follows by Cauchy’s theorem 
that for integers ,1>n  
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It now follows from the residue theorem that 
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We now express ( )asN ,ζ  in terms of ( )., asIN  For ( ) ,1>σ=sℜ  the 

middle integral in (3.2) goes to zero as .0→δ  It follows that 
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Now, by using the functional equation for the gamma function 
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Remark 3.2. Equation (3.5) and the fact that 10 << a  imply that 
the zeros of ( )asIN ,  at positive integers 1>n  are simple, since we know 

by Equation (1.1) that ( ) 1, >ζ anN  for .1>n  

We close this section by proving the following theorem:  
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Furthermore, for negative integers n less than ,2 N−  we have 
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Proof. Since ( )( )11 −+−Γ Ns  has only simple poles at ,2 Ns −=  

,,3 "N−  and ( )asIN ,  has simple zeros at ,,3,2 "=s  it follows from 

(3.5) that ( )asN ,ζ  is analytic on the whole plane except for simple poles 

at .12, ≤≤−= nNns  Recalling the fact that the residue of ( )sΓ  at 

negative integer n is ( ) ,!1 nn−  it follows from (3.4) that 
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which is (3.7) . This completes the proof of the theorem.   
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4. Moments of Hypergeometric  
Hurwitz Zeta Functions 

In the present section, we discuss a ‘pre-functional equation’ satisfied 
by ( )., asNζ  Let Rγ  be the contour shown in Figure 2, where the outer 

circular region is part of a circle of radius ( )π+= 12MR  (M is a positive 

integer so that the poles of the integrand are not on the contour), the 
inner circle has radius ,1<δ  the vertical line is ( ) .1−=zℜ  The outer 

semi-circle is traversed clockwise, the imaginary axis is traversed from 
bottom to top, the inner circle counterclockwise, and the radial segment 
along the positive real axis is traversed in both directions. Then define 
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We claim that ( )asI R ,γ  converges to ( )asIN ,  as ∞→R  for 

( ) .0<sℜ  To prove this, observe that the portion of ( )asI R ,γ  around the 

outer circle and the imaginary axis tends to zero as ∞→R  on the same 
domain. To prove this, we first choose a constant ,0>P  such that 
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converges to zero as ,∞→R  since .22 π<θ<π−  On the imaginary 

axis ,iyz =  we have 
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which converges to A1  as .∞→y  Since ( ) ( ) 1−<− ss zzz ℜ  and 

( ) ,0<sℜ  we conclude that the integrals on the outer circle and the 

vertical lines both converge to zero as .∞→R  On the circle of radius ,2δ  
the integrand is bounded and hence the integral vanishes as .0→δ  

( ) ( ).,lim, asIasI RRN γ∞→
=  (4.2) 

 

Figure 2. Contour .Mγ  
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On the other hand, we have by residue theory 
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Here, ki
kk erz θ=  and ki

kk erz θ−=  are the complex conjugate roots of 

( ) 01 =− − zTe N
z  and MKK =  is the number of roots inside Rγ  in the 

upper-half plane. Clearly, kz  depends on N. We will make this 

assumption throughout and use the same notation kz  instead of the more 

cumbersome notation ( ).Nzk  Moreover, we arrange the roots in 

ascending order so that ,321 "<<< zzz  since none of the roots can 
have the same length (see [4]). Now, to evaluate the residues, we call 
upon Cauchy’s integral formula 
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Here, kC  is any sufficiently small contour enclosing only one root kz  of 
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Since ∞→K  as ,∞→R  we have by (4.2) and (4.4), 
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=  

( ) ( ) ( ) ( ) ( ) ( )[ ].!112 1111

1

1 kk zas
k

zas
k

k

N ezezN −−−−
∞

=

− −+−−−= ∑ (4.5) 

Combining (3.5) and (4.5), we have proved 

Theorem 4.1. For ( ) ,0<sℜ  

( ) ( ) ( ) ( )( )11!112, 1 −+−Γ−−=ζ − NsNas N
N  

( ) ( )[ ( ) ( ) ].1111

1

kk zas
k

zas
k

k
ezez −−−−

∞

=

−+−× ∑   (4.6) 

Theorem 4.2. For ( ) ,Ns −<ℜ  

( )daasa N
M ,

1

0
ζ∫  

( ) ( )( )
( )( ) ( )

( ) ( )( )
( )( ) ( )

















≥−−+ζ
−−++−Γ
−+−Γ−

−<−−+ζ
−−++−Γ
−+−Γ−

−=

=
−

=

−−

+=

∑

∑
.if,121!

11!1

,1if,121!
11!1

,1if,0
1

1

NMMnsMnNsn
NsM

NMMnsMnNsn
NsM

NM

N
nMM

Nn

N
nMN

Mn
 

 (4.7) 

Proof. Denote by ( ) ( ) ( )( ).11!112 1 −+−Γ−−= − NsNA N  Then for 

,NM ≥  

( )daasa N
M ,

1

0
ζ∫  

( ) ( ) ( ) ( )[ ]daezezaA kk zas
k

zas
k

k

M −−−−
∞

=

−+−= ∑∫ 1111

1

1

0
  (4.8) 
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( ) ( ) ( ) ( ) .11

0
111

0
1

1








−+−= −−−−

∞

=
∫∫∑ daeazdaeazA kk zaMs

k
zaMs

k
k

 (4.9) 

To justify the interchange of the sum and the integral, we note that 

kkk iyxz +=  with 0≥kx  and .0≥ky  We recall from the work in [4] 

that kzk α≥  for some positive constant .α  Thus, 

( ) ( ) kkk axz
k

zas
k eezez −−σ−− =− 111  

( )kNk zTz 1
1

−
−σ≤  

,11 −−σβ≤ N
kk zz  

where β  is some positive number and Mzk >  for some positive number 

M. Consequently, 

( ) ( ) ,:211
k

Nzas
k Mkez k =αβ<− −+σ−−  

for all Mzk >  and .02 <−+σ N  Since 

( ) ,2
1

∞<σ−−αβζ=∑
∞

=

NMk
k

 

we see that the infinite series is uniformly convergent and hence the 
interchange is admissible. 

But 

( )
( )

1
!111

0
!

+
=−− ∑

∫
−−

= M
k

n
zM

NnkN
z

zaM

z

zTe
Mdaea

n
kk

k  (4.10) 

,!!
1

n
z

M
Mn

k
M

Nn

−−

=
∑−=  (4.11) 

since kz  are roots of ( ) .01 =− − zTe N
z  A similar integral formula holds 

for the roots .kz  It follows that 
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( )daasa N
M ,

1

0
ζ∫  

( ) [( ) ( ) ]












−+−−= −−+−−+−

=

∞

=
∑∑ 22

1
!
!1 Mns

k
Mns

k
nM

M

Nnk
zzn

MA  

( ) ( )( )
( )( ) [( ) ( ) ]













−+−
−−++−Γ
−+−Γ−= −−+−−+

∞

=

−

=
∑∑ 22

1
21!
11!1 Mns

k
Mns

k
k

nMM

Nn
zzMnNsn

NsM  

( ) ( )( )
( )( ) ( ).121!

11!1
−−+ζ

−−++−Γ
−+−Γ−

=
−

=
∑ MnsMnNsn

NsM
N

nMM

Nn
 (4.12) 

The argument for the cases 1−= NM  and 1−< NM  are completely 
analogous.   

5. A Zero Free Region on the Left Half-Plane 

In this section, we will prove that ( )as,2ζ  has no zeros in the left 

half-plane ,3−<σ  except for one zero in the interval mS  for each 

integer ,3≥m  where mS  is given by 

[ ] ( ) .,3,2,1,1;,
1

11
1 …=

θ
π−−−θ

=σσσ= − mmyaS mmmm  

Here 2978341024.11 =θ and .461489286.71 =y  

In [4], we had established the following facts about the zeros 

ki
kkkk eriyxz θ=+=  of .01 =−− zez  These zeros can be arranged in 

an increasing order of magnitude and in doing so we will have the 
argument also in an increasing order. In fact, both sequences { }kθ  and 

{ }kr  are increasing with 

.2and20 krkk π>π<θ<   (5.1) 
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Furthermore, for ,1>R  if Rzr kk >=  and we define 

( )
,1,1

1 2

2

−
=−

+
= R

RBRR
RA  (5.2) 

then 

.kk x
k

x BeyAe ≤≤  

In the same paper (see Lemma 5.2), we also have 

.4
128

12 




 +π<<





 +π kyk k  

Combining these last two inequalities, we see that 

( ) ( )
( )

( ) ( )
.4

12
8
12 11

1
11 aa

xa
aa

kAekB
k

−−
−

−−





 +





 π≤≤





 +





 π  (5.3) 

Theorem 5.1. Let .its +σ=  If 3−<σ  and ,1>t  then ( ) .0,2 ≠ζ as  

Proof. We use (4.6) (with 2=N ) and rewrite ( )as,2ζ  as 

( ) ( ) ( )( ),,1,,2 asgasfas +=ζ   (5.4) 

where 

( ) ( ) ( ) ( ) ( ) ( )[ ],2, 11 11
1

11
1

zaszas ezezsasf −−−− −+−−Γ−=   (5.5) 

and 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .,
11 11

1
11

1

1111

2 











−+−

−+−
=

−−−−

−−−−∞

=
∑ zaszas

zas
k

zas
k

k ezez
ezezasg

kk
 (5.6) 

We now estimate ( ) ., asg  First note that by triangle inequality, we 

have 

( )
( )

( ) ( ),2, 11
1

12

xxak

k

ker
rasg −−

−σ∞

=








α
≤ ∑  (5.7) 
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where 

( ) ( )

( ) ( ) .1
1

1

11
1

11
1

zas

zas

ez
ez

−−

−−

−

−
+=α  (5.8) 

For ,1>t  we have by the reverse triangle inequality 

( ) ( )

( ) ( ) ,925404.0111 11
1

1 22
11

1

11
1 ≈−≥−=

−

−
−≥α θ−θ−

−−

−−
ee

ez
ez t

zas

zas
 

while for ,1−<t  we have 

( ) ( )

( ) ( ) .045544.12111 11
1

1 22
11

1

11
1 ≈−≥−=−

−

−
≥α θθ−

−−

−−
ee

ez
ez t

zas

zas
 

Thus for ,1>t  we see that .0806091.11 ≤α  Using this bound for 
α1  and using (5.3) in (5.7), we get 

( ) ( )
( ) ( ) ( )

.4
1

9
80806091.12,

11

12

1 a
k

k

a
kr

r
A
Basg

−−σ∞

=

−





 +













≤ ∑  (5.9) 

We use krk π> 2  from (5.1), to estimate the above inequality as 

( )
( ) ( ) ( )

.4
11

29
81612183.2,

1

1
2

1
1

1 a

k

a
k

k
r

A
Basg

−

σ−

∞

=

σ−−





 +








π




< ∑  (5.10) 

We now use the fact that 48360311.71 ≈r and choose 10=R  in (5.2), 
to get .11111.1,852318.0 ≈≈ BA  With these values, the function 

( )
( ) ( ) ( )

,4
11

29
81612183.2:,

1

1
2

1
1

1 a

k

a
k

k
r

A
Ba

−

σ−

∞

=

σ−−





 +








π




=σφ ∑  (5.11) 

is an increasing function of σ  on ( )3, −−∞  and a decreasing function of a 
on [ ].1,0  Hence, 

( ) ( ) ( ) ,10,3,, <−φ≤σφ≤ aasg  

for 3−<σ  and .10 << a  By the reverse triangle inequality, it follows 
that 
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( ) ( ) ( ) ( ) ( )( ) ,0,1,,1,,2 >−≥+=ζ asgasfasgasfas  

since ( ) 0, >asf  in the region of the hypothesis. This proves the 

theorem. 

Theorem 5.2. If 3−≤σ  and ,1≤t  then ( )as,2ζ  has exactly one 

root in the interval [ ],, 1−σσ mm  where 

( ) .,3,2,1,1
1
11 …=

θ−π
π−−−θ

=σ mmya
m  (5.12) 

Here 2978341024.11 =θ and .461489286.71 =y  

Proof. Let mγ  be the rectangle with vertices im ±σ  and .1 im ±σ −  

Let ( )asf ,  and ( )asg ,  be as in (5.5) and (5.6), respectively. We shall 

show that 

( ) .on1, masg γ<   (5.13) 

Note then that, by the definition of f and g ((5.5) and (5.6)), we have 

( ) ( ) ( ) ( ) ( ) ,,,,,,2 asfasgasfasfas <=−ζ  

and by Rouche’s theorem ( )asf ,  and ( )as,2ζ  have the number of roots 

inside .mγ  Clearly, the roots of 

( ) ( ) ( ) ( ) ( ) ( )[ ],2, 11 11
1

11
1

zaszas ezezsasf −−−− −+−−Γ−=  

are the roots of ( ) ( ) ( ) ( ) 11 11
1

11
1

zaszas ezez −−−− −+−  and the later has 

exactly one root in the interval [ ],, 1−σσ mm  where mσ  is given by (5.12). 

On the other hand, from (4.6), we observe that ( ) ( ).,, 22 asas ζ=ζ  Thus, 

if its +σ=  with 1≤t  and 1−σ≤σ≤σ mm  is a root of ( ),,2 asζ  then s  

is also a root in the same region. Hence ss =  and the theorem follows. 

To prove (5.13), we first consider the vertical line ,1, ≤σ=σ tm  

where mσ  is given by (5.12). Using its m +σ=  in (5.8), we have 

( ) ( )aiysie −−−θ−+=α 1212 111  
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ttim eee 11 222 11 θ−θ−π− +=+=  

.074596014.1>  

Hence .9305823.01 <α  But then (5.10) becomes 

( )
( ) ( ) ( )

.4
11

29
88611647.1,

1

1
2

1
1

1 a

k

a
k

k
r

A
Basg

−

σ−

∞

=

σ−−





 +








π




< ∑  (5.14) 

It then follows from the proof of Theorem 5.1, that ( ) ( ) ,1,, <σφ< aasg  

where ( )a,σφ  is given by (5.11), for .29524.42 −<σ≤σ=σ m  Similar 

argument can be used on the vertical line ( ),11
1

1 −
θ−π

π−=σ=σ − mm  

.1≤t  

Next, we consider the top horizontal boundary 1,1 −σ≤σ≤σ= mmt  

of .mγ  On this line, we have, again from the proof of Theorem 5.1, 

.0806091.11 ≤α Once again, we have ( ) ( ) 1, <σφ<asg  since      

.29524.42 −<σ≤σm  The argument for the lower horizontal boundary 

is exactly the same and we have proved our theorem. 

Theorem 5.3. Let .its +σ=  If 4−<σ  and ,1>t  then ( ) .0,3 ≠ζ as   

Proof. As in Theorem 5.1, we also use (4.6) with .3=N  Let ( )asf ,  

and ( )asg ,  be as in (5.5) and (5.6), respectively, with ki
ker θ  being roots 

of .021 2 =−−− xxex  In [4], we have established that the roots of 

021 2 =−−− xxex  can be rearranged to satisfying (5.1). Furthermore, 

we have ,1406576364.1,2053499.9 11 ≈θ≈r  and .2568294158.12 ≈θ  

Hence for ,1>t  we have .927818.01 <a On the other hand, for 

,4−<σ  we have 

( ) .1, <σφ a  

As before, it follows that ( ) 1, <asg  for 4−≤σ  and 1>t  and hence 

( ) .0,3 ≠ζ as  This completes the proof of the theorem. 
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Combining the arguments of the proofs of Theorem 5.2 (with the 
obvious modifications) and Theorem 5.3, we obtain the following theorem: 

Theorem 5.4. If 3−≤σ  and ,1≤t  then for each ,,5,4,3 "=m  

( )as,3ζ  has exactly one root in the interval [ ],, 1−σσ mm  where mσ  is 

given by (5.12). .)1406576364.1 ( 1 ≈θHere  
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